
BJC ORP Sensor SP200-2PB0-DH

Applications:

In-Line & Submersion (with a Housing).

Glass Body Sensors with PG13.5 Threads The SP Series ProcessProbe™ electrodes are available for pH and ORP measurements. The SP Series electrodes are 12 mm x 120 mm with a threaded PG13.5 cap. These dimensions make them compatible with many pre-existing housings found in industrial and waste treatment applications. Like all BJC ProcessProbes™, these electrodes are designed to work with ProMinent transmitters and most other brands of existing instruments and cables. The Double Junction Reference system used in all BJC Process Probes reliably prevents process contaminants from fouling the reference. Since the reference is sealed, there is no electrolyte maintenance required.

The SP200 has a glass body to withstand temperatures up to 110°C and pressures up to 10 bar. It utilizes the same glass found in DynaProbe® electrodes. The glass formula allows for minimum Sodium ion interference while retaining fast response.

Specification:	
ORP Tip:	Glass with Platinum Band
Reference:	Silver/Silver Chloride (Ag/AgCI)
Reference Junction:	Precision made junction of specially formulated
	low porosity ceramic
Electrolyte:	3.8 Molar Potassium Chloride (KCI) Gel
Temperature Range SP200 Series:	Operation: -5 to 110°C
Redox Range:	±5000 mV
Max Pressure SP200 Series:	10 bar (atm), 150 psig
Connector:	Standard Pg13.5 threaded cap with -S8 cable
	attachment. O-ring sealed
Wetted Materials SP200 Series:	Glass, Ceramic

INSTRUCTION on USE, CLEANING & STORAGE

Preparation for Use:

- 1. Remove protective cap containing the storage solution (3.8 Molar KCl).
- Save the protective cap for future use as a storage container and bulb protector when sensor is not in service. We recommend 3.8M KCl as the storage solution.
- For first-time use after removing the storage boot: Inspect the sensor for any signs of breakage or shipping damage and commence with Calibration Procedures.
- 4. For sensors with replaceable O-ring seals: All O-rings require proper lubrication. We recommend use of PARKER O LUBE or equal for this purpose. Follow the instructions provided with lubricant. For best results we recommend

that all O-rings be replaced whenever sensor is removed for service or inspection.

Caution:

Hand-tighten only! It is not necessary to apply excessive torque to achieve a liquid tight installation. Severe twisting of the sensor housing could cause internal damage. If necessary, use wrench for removal only!

ProMinent Fluid Controls Pty Ltd

Head Office: Unit 4, 4 Narabang Way BELROSE NSW 2085 (PO Box 85, BELROSE WEST NSW 2085) Ph: (02) 9450 0995 Fx: (02) 9450 0996 Email: sales@prominentfluid.com.au **QLD Office:** 1048-1054 Beaudesert Road COOPERS PLAINS QLD 4108 Ph: (07) 3246 5200 Fx: (07) 3246 5225 Email: pfcqld@prominentfluid.com.au VIC Office: Unit 2, 88 Star Crescent Hallam VIC 3803 Ph: (03) 8795 7430 Fx: (03) 8795 7431 Email: pfcvic@prominentfluid.com.au

Calibration Procedure:

 Unlike pH sensors, the measurement half-cell of the ORP (Redox) sensors undergo no zero-point or slope changes. Nevertheless, incorrect Redox potentials may be occasionally measured and the cause of these errors is usually a contaminated Pt surface.

In such cases, the sensor may be regenerated by cleaning as described in the next section. To test the Redox ProcessProbe's accuracy proceed with the following Quinhydrone tests.

CAUTION:

Quinhydrone is very toxic and should be handled by qualified technicians only. Handle with care and avoid ingesting. Avoid contact with bare skin. Dispose of the Quinhydrone solutions per your local wastewater regulations.

2. The oxidation-reduction potential of a Quinhydrone solution is pH dependent. By saturating pH buffers with Quinhydrone you can make stable mV standard solutions to use in testing your Redox ProcessProbe. Ideal values for some common buffers (saturated with Quinhydrone) are listed below:

3. Sensor construction and prior usage will make the actual magnitude of the first two test readings vary. The actual readings in the buffers could vary by ± 20 mV.

However, a clean Redox ProcessProbe will give reproducible Δ values of Δ 173 ± 4mV. It is this Δ value that provides an indication of the functional performance of the sensor.

Procedure:

1. Place 50 -100 ml of pH 7.00 and 4.01 buffers in suitably sized beakers, stir about 0.2g/100ml of Quinhydrone into each buffer.

Note:

The Quinhydrone will not all dissolve.

The intention here is to prepare a saturated solution. There should be a little of the powder undissolved.

2. Prepare the Redox probe for testing by cleaning the platinum surface with a liquid hand soap and soft toothbrush (do not scar or scratch the platinum surface).

Consult factory prior to using solvents or other cleaning agents. Rinse thoroughly with clean tap water.

- 3. Connect the Redox probe to a suitable pH meter, set to the millivolt scale.
- 4. Immerse the sensor in the pH 7.00/ Quinhydrone mixture. The meter should read between +70 and +110 millivolts.
- 5. Rinse the sensor thoroughly with clean tap water, and immerse it in the pH 4.01/Quinhydrone mixture. The meter should now read between +240 and +280 millivolts.

Notes:

· This test verifies the function of the platinum combination Redox (ORP) sensor by actual measurement of a known oxidation-reduction potential change. If a sensor responds adequately in this test (e.g. \triangle 169 to \triangle 177 mV between the 7 and 4 buffer/ Quinhydrone mixtures) but the values fall outside of these ranges, it indicates a plugged reference junction or a contaminated reference internal solution.

• The buffer/Quinhydrone mixtures will not remain useful for more than two hours since the Quinhydrone decomposes slowly in contact with air. Dispose of this solution per local wastewater regulations.

Cleaning a ProcessProbe with Impaired Response:

Used sensors which are physically intact can sometimes be restored to an improved level of performance. All sensors have a given useful lifespan depending on the conditions of use. One of the following procedures may prove helpful in restoring a used sensor.

- 1. Initial Cleaning: Wash with a solution of liquid detergent or enzyme detergent and warm water by gently scrubbing with a soft toothbrush or cloth. Follow with thorough rinse in D.I. or clean tap water.
- 2. Inorganic Scale Deposits: Dissolve deposit by immersing the sensor's measurement tip in dilute hydrochloric acid for a few minutes followed by a thorough rinse with D.I. or clean tap water. Platinum bands can be polished with a fine grade of alumina (Al203) or some similarly fine polishing compound.
- 3. Organic Oil or Grease Films: If film is known to be soluble in a particular organic solvent which is not harmful to platinum or glass, wash it with this solvent

Repeat Step #1 above. Depending on the extent of and/or grease contamination, it should be noted that the reference half-cell's liquid junction may be damaged beyond recovery

4. Plugged or Dry Ceramic Liquid Junction: Remove contaminant with one of the above procedures, then soak in 3.8M KCI solution for 30 - 45 minutes.

Notes:

• Do not permit sensor to dehydrate or dry out. Always keep in a wetted environment especially when not in service.

· Cracked or broken sensors are not repairable

· Inspect cable and connector to ensure that the insulation is intact and that there are no signs of corrosion or contaminants on the metal components.

Storage:

- 1. Short-Term: Immerse sensor measurement tip and liquid junction surface areas in 3.8M KCI. If this solution is not available, use 4.01 pH buffer, clean tap water, or lastly, a sample of the process being measured to keep the sensor hydrated.
- 2. Long-Term: Fill protective cap that the sensor was originally shipped in with a freshly prepared 3.8M KCI solution and insert sensor. The sensor should be stored in an upright (vertical) position.

Oxidation-reduction Potential Measurements With Redox Processprobes

The Redox sensors are designed for the measurement of the Oxidation-Reduction Potential of an aqueous process medium or wastewater. The sensor is used in conjunction with a pH meter or other electroanalytical instrumentation that can be set to read millivolts.

The Redox probe is a combination sensor with a reference half-cell and Platinum band measurement half-cell built into one body. Essentially the measured Redox potential is the EMF difference between the potential on the Platinum band and the potential of the built-in reference half-cell.

The potential measured with the Redox probe is proportional to the ratio of the concentration of the oxidized and reduced states of the elements and compounds that make up the test sample. The potential of the Redox probe can be expressed by the general form of the Nernst equation:

Equation 1.

$$E = E_0 + En Log [Oxident] @ 25°C[Reductant]$$

Where:

- E = The voltage potential observed with the Redox ProcessProbe.
- EO= A constant characteristic of the system in question (mV).
- EN = Nernst potential (59.2 mV @ 25° C)
- N = The number of electrons reacting in the Redox equation.

Some work requires that the measured potential E be converted to $\mathsf{E}_{\!\scriptscriptstyle \mathrm{H}}$. The value $\mathsf{E}_{\!\scriptscriptstyle \mathrm{H}}$ is the observed potential difference between the Platinum band and a normal Hydrogen sensor as the reference (the potential of which is zero by definition). Since the normal Hydrogen sensor is rarely used as a reference in actual measurements, the measured potential E will not be equal to E_{μ} .

However, E₁ can be calculated by adding algebraically the measured potential E and the standard potential, $E_{\rm R}$, of the reference sensor that is actually used for the sample measurement. The standard potential E_{R} is the difference between the measuring reference sensor and the normal Hydrogen sensor at 25° C. Therefore:

Equation 2.

Where:

 E_{R} = standard potential of the reference sensor

Please note that the reference sensors used in the ProcessProbe series of combination sensors are the Ag-AgCl type utilizing a 3.8 M KCl electrolyte salt bridge. The standard potential E_p of the ProcessProbe series reference is + 202 mV at 25° C (see Table 1 for other temperatures).

Example:

If the potential E is measured with the Redox probe and is found to be 400 mV at 25° C, then the E. (at 25° C) of the test sample is calculated as follows:

$$E_{H} = E + E_{R}$$

 $E_{H} = 400 \text{ mV} + 202 \text{ mV}$
 $E_{H} = 602 \text{ mV}$

Please note that the values E, E_{H} and E_{R} are all temperature dependent.

Use Table 1 for values of E_{R} at temperatures other than 25° C. These values are necessary to calculate ${\rm E_{_H}}$ at temperatures other than 25° C with Equation 2.

TABLE 1 E_n Values for the Redox ProcessProbe®

Temp.(°C)	E _R (mV)
15°	209
20°	206
25°	202
30°	198
35°	195
38°	193
40°	191

TABLE 2

Nernst Potentials (E_N) from 15° to 40° C

Temp.(°C)	EN (mV)
15°	57.2
20°	58.2
25°	59.2
30°	60.1
35°	61.1
38°	61.7
40°	62.1

The actual magnitude of the potentials E or E_u of any particular Oxidation-Reduction system will depend on three things:

- (1) The constants of that system, E_o and N.
- (2) The temperature dependent values, $E_{\rm N}$ and $E_{\rm R}$ (see Tables 1 and 2).
- (3) The ratio of concentrations of the oxidants and reductants in the system.

Therefore, in any reversible Oxidation-Reduction system, the measured potential E and the calculated potential E_{μ} are both functions of the temperature and of the ratio of concentrations of the oxidants and reductants. Please note that if all measurements are done at the same temperature, the temperature dependent values become constants.

Regardless of the initial magnitude of the values E and E_u, both values will become more positive when the concentration of the oxidant increases relative to the reductant (oxidizing intensity becomes greater).

Conversely, the values of E and E will become more negative when the concentration of the reductant increases relative to the oxidant (reducing intensity becomes greater).

E_ = E + E_